Free Google Professional-Machine-Learning-Engineer Exam Questions

Become Google Certified with updated Professional-Machine-Learning-Engineer exam questions and correct answers

Page:    1 / 58      
Total 289 Questions | Updated On: Feb 09, 2026
Add To Cart
Question 1

You work at a bank. You need to develop a credit risk model to support loan application decisions You decide to implement the model by using a neural network in TensorFlow Due to regulatory requirements, you need to be able to explain the models predictions based on its features When the model is deployed, you also want to monitor the model's performance overtime You decided to use Vertex Al for both model development and deployment What should you do? 


Answer: A
Question 2

You work at a subscription-based company. You have trained an ensemble of trees and neural networks to predict customer churn, which is the likelihood that customers will not renew their yearly subscription. The average prediction is a 15% churn rate, but for a particular customer the model predicts that they are 70% likely to churn. The customer has a product usage history of 30%, is located in New York City, and became a customer in 1997. You need to explain the difference between the actual prediction, a 70% churn rate, and the average prediction. You want to use Vertex Explainable AI. What should you do?


Answer: A
Question 3

You work for a magazine distributor and need to build a model that predicts which customers will renew their subscriptions for the upcoming year. Using your company’s historical data as your training set, you created a TensorFlow model and deployed it to Vertex AI. You need to determine which customer attribute has the most predictive power for each prediction served by the model. What should you do?


Answer: B
Question 4

You work on a team that builds state-of-the-art deep learning models by using the TensorFlow framework. Your team runs multiple ML experiments each week which makes it difficult to track the experiment runs. You want a simple approach to effectively track, visualize and debug ML experiment runs on Google Cloud while minimizing any overhead code. How should you proceed?


Answer: A
Question 5

You need to design an architecture that serves asynchronous predictions to determine whether a particular mission-critical machine part will fail. Your system collects data from multiple sensors from the machine. You want to build a model that will predict a failure in the next N minutes, given the average of each sensor’s data from the past 12 hours. How should you design the architecture?


Answer: C
Page:    1 / 58      
Total 289 Questions | Updated On: Feb 09, 2026
Add To Cart

© Copyrights DumpsCertify 2026. All Rights Reserved

We use cookies to ensure your best experience. So we hope you are happy to receive all cookies on the DumpsCertify.