Free Google Professional-Machine-Learning-Engineer Exam Questions

Become Google Certified with updated Professional-Machine-Learning-Engineer exam questions and correct answers

Page:    1 / 58      
Total 289 Questions | Updated On: Feb 21, 2026
Add To Cart
Question 1

You have trained a deep neural network model on Google Cloud. The model has low loss on the training data, but is performing worse on the validation data. You want the model to be resilient to overfitting. Which strategy should you use when retraining the model?


Answer: D
Question 2

You are training an object detection machine learning model on a dataset that consists of three million X-ray images, each roughly 2 GB in size. You are using Vertex AI Training to run a custom training application on a Compute Engine instance with 32-cores, 128 GB of RAM, and 1 NVIDIA P100 GPU. You notice that model training is taking a very long time. You want to decrease training time without sacrificing model performance. What should you do?


Answer: C
Question 3

You trained a text classification model. You have the following SignatureDefs:
0001300001
You started a TensorFlow-serving component server and tried to send an HTTP request to get a prediction using: headers = {"content-type": "application/json"} json_response = requests.post('http: //localhost:8501/v1/models/text_model:predict', data=data, headers=headers)
What is the correct way to write the predict request?


Answer: C
Question 4

Your team is working on an NLP research project to predict political affiliation of authors based on articles they have written. You have a large training dataset that is structured like this:
0002900001
You followed the standard 80%-10%-10?ta distribution across the training, testing, and evaluation subsets. How should you distribute the training examples across the train-test-eval subsets while maintaining the 80-10-10 proportion?


Answer: C
Question 5

You work for a large social network service provider whose users post articles and discuss news. Millions of comments are posted online each day, and more than 200 human moderators constantly review comments and flag those that are inappropriate. Your team is building an ML model to help human moderators check content on the platform. The model scores each comment and flags suspicious comments to be reviewed by a human. Which metric(s) should you use to monitor the model’s performance?


Answer: B
Page:    1 / 58      
Total 289 Questions | Updated On: Feb 21, 2026
Add To Cart

© Copyrights DumpsCertify 2026. All Rights Reserved

We use cookies to ensure your best experience. So we hope you are happy to receive all cookies on the DumpsCertify.